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ABSTRACT-On the basis of a 10-yr record of rawinsonde in time and space. The procedure, based on the theory of 
observations in the Tropics, experhents were run to optimum interpolation, determines the relative weights of 
illustrate the manner in which climatblogy may be used the data used in the interpolation on the basis of their 
to minimize the root-mean-square errors of interpolation error characteristics, their location, and the scale and 
from data of mixed quality that ‘are irregularly located variability of the meteorological fields that they sample. 

1. INTRODUCTION 

Meteorological observations over the globe are made 
from a large variety of platforms and are different in 
quality and character. With the progressively increasing 
availability and improvement of observations from satel- 
lites and other nonconventional platforms, and the difE- 
culty and expense of greatly increasing the number of 
conventional radiosonde observations over the oceans and 
deserts, one can foresee that global meteorological obser- 
vations of the future will be even more heterogeneous and 
irregular than they now are. 

An “analysis” that would generate, from such an m a y  
of observations, a regular three-dimensional lattice of data 
representing an instantaneous state of the atmosphere 
must involve interpolation procedures. For be& results, of 
course, these procedures should not be haphazard but 
rather should aim to extract the maximum information 
from all available observs tions and combine these observa- 
tions, each with its proper weight, to generate the most 
accurate gridpoint values possible. 

Most analysis procedures impose consistency con- 
straints to reduce errors. These constraints are all the more 
necessary where the observations are sparse or are subject 
to errors. The constraints imposed may be simple such as 
the hydrostatic or geostrophic relationships, or they may 
be complex such as those formulated by Sasaki (1969), 
Thompson (1969), and others. 
In recent years, the theory of optimum interpolation 

which, by imposing climatological constraints, minimizes 
the root-mean-square (rms) interpolation errors (Gandin 
1963) has attracted increasing attention. Application of 
this theory requires a knowledge of not only the statistical 
structure, in time and space, of the meteorological fields 
that are being analyzed but also of the random errors 
inherent in the data used in the analysis. 

On the basis of a IO-yr record of rawinsonde observa- 
tions from some 35 stations in the Caribbean region, we 
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have carried out some experiments to illustrate the capa- 
bility of this method which, under certain circumstances, 
can generate interpolated gridpoint values with an rms 
error less than that of the observations themselves. The 
experiments demonstrate how observations of mixed 
quality, which may be irregularly located in space and 
time, can be combined and their optimum relative weights 
determined on the basis of their error characteristics and 
their location, as well as the scale and variability of the 
meteorological fields that they sample. The experiments 
also shed some light on the usefulness and advantages of 
forecasts as a h t  guess and the proper relative weight 
that they should be given. Finally, the experiments pro- 
vide some insight into the proper spacing of observations 
in the Tropics. 

2. BASIC EQUATIONS 

Let ri=Po, rl, . . ., r, denote a set of independent vectors 
dehing the location of points in a sampling space. Con- 
sider a function f (r) whose sampled values f (= f ,, f z ,  . . ., 
3, have errors €(=el, e, . . .,e, so that 

A A A  

A 
f r=f r+ei. (1) 

We Wish to determine the Xalue fo  at some location 
ro from the measured values f (. If ji and fi denote the 
deviations of f e  and f i  from their respective means, we 
may express fi in terms of the following linear combina- 
tion : 

f:=& ( j ; + e t >  pi+lo (2) 
1-1 

in which Pi  are the weighting factors and Io is the error 
in determining fi by interpolation from’f (. 

A 

The mean-square interpolation error is given by 

(3) 



We make the usually satisfactory assumption that the 
random errors, e t ,  are (1) unrelated to the true values of 
the measured quantities; that is, 

and (2 )  unrelated to each other; that is, 

(5) 
0 when i# j  
u:* when i=j 

where u:* denotes the mean-square random observation 
errors. The above assumptions imply that the random 
errors do not &ect the values of the true covariances but 
inflate the true variances a: by an amount usi. 

By invoking the assumptions in eq (4) and ( 5 ) ,  we can 
rewrite eq (3) as 

The optimum weights, pi . ,  corresponding to a minimum 
value of E,  are obtained by setting 

as 

They form a system of linear equations; that is, 

(i=l, 2, . . . , n ) *  (8) 

Denoting gmin by E and combining eq (6) and (8), we 
have 

AUTOCORRELATION WITH RESPECT T O  KEY WEST - 850mb 
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It is convenient to assume that the variances are homo- 
geneous and the covariances both homogeneous and 
isotropic. Equations (8) and (9) may then be written 

n 

j=l 
c Pt.jP5+X~Pi=cco. t ( i= l ,  . . . , n) (10) 

and 

where 

Pt.j=;z- 3;3; 
is the autocorrelation coefficient between values of the 
function at locations rr  and rj, 

fAj; 
PO, t = q 2  

is the autocorrelation coefficient 
function at  ro and rt, and 

between values of the 

From eq (10) and ( l l ) ,  we note that both the weights 
and the rms interpolation errors depend on the scale of 
the function as represented by the autocorrelations p,,,t 
and on the variability as represented by 2, and on 
the random error, (ret. Equation (11) shows that the 
mean-square interpolation error cannot exceed the variance 
of the function that is being interpolated. 

3. COMPUTATIONAL PROCEDURES 

Effective minimization of the rms interpolation error 

L-., 

FIGURE 1.-Autocorrelations (in hundredths) and variances of the zonal wind in July. 
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by the above procedure depends on an accurate estimate 
of the random errors, the variances, and the autocorrela- 
tion functions. We mentioned in the previous section 
that we have assumed the variances to be homogeneous 
and the covariances both homogeneous and isotropic. 

TABLE 1.-Estimates of random errors and average variances of the 
Caribbean data 

Level Rmsrandom Variance 
Element Month (mh) error (uJ (4 

850 3.0 kt 84. 9 kta 
January 500 4.7 244.0 

Zonal wind com- 200 7.1 579.0 

July 500 4.0 45. 5 
ponent (v) 850 3.0 k t  34. 3 ktt 

200 4.8 241.0 

850 3. 0 k t  101. 0 kta 
January 500 4. 7 194.0 

Meridional wind 200 7.1 524.0 

850 3. 0 kt 29. 9 kt2 

200 4. 8 172.0 

850 0. 84°C 10. 3 '0  
January 500 0. 84' 5. 6 

200 0. 84" 7. 1 

850 0. 84'C 2. 82OC2 
July 500 0. 84' 2. 03 

200 0. 84" 3. 99 

component (V) 
July 500 4.0 34.2 

Temperature (T) 

Figure 1 indicates that neither assumption is strictly 
valid. Therefore, due allowance must be made for these 
assumptions in interpreting our results. 

a. Random Errors 

To determine the nns random error, u., we have also 
assumed the structure function, 8, to be homogeneous and 
isotropic. Under these assumptions, this function depends 
only on p=ri-r j ,  the distance between observation pairs 
located at  rt and rj. Thus, 

As shown by 2andin (1963, ch. 2), the estimated 
structure function p ( p )  is related to the true function B(p)  
as follows: 

â  ( P I = @  (P)+2d. (13) 

Thus, 2af may be estimated by fitting a curve to the 
computed structure function, B ( p ) ,  plotted against dis- 
tance, Q and extrapolating the curve until it  intersects the 
axis of ~ ( p )  at  p = O .  The value of US thus estimated will 
comprise both the random measurement errors and the 
aliasing errors inherent in the observations. Table 1 shows 
values of estimated by this method for different 
elements, levels, and seasons. Only station pairs with at  
least 100 simultaneous observations were used in the 
computations. 

TABLE 2.-Autocorrelatabn funetabns (p)  

Element Month Level (mh) Autocorrelation 

Zonal wind component (U) 850 

200 
850 

200 

p= [1.44 exp (-0.537 p O.eW) -0.441 cos 0.260~ 

p= [2.52 exp (-0.270 p '3.845) - 1.521 cos 0.292 p 

p=[0.895 exp (-2.12 p 1.m)+0.105] cos 0 .441~ 

p=[1.01 exp (-1.37 p 1.a6)-0.01] cos 0.985~ 

January 500 p=[2.70 exp (-0.211 p1.16)-1.70] cos0.356~ 

July 500 p=[1.02 exp (-1.71 p 1.86)-0.02] cos 0.190 p 

Meridional wind component (V) 850 

200 
850 

200 

p=[1.76 exp (-0.447 p 1.as)-0.76]cos -0.361~ 
January 500 p=[1.69 exp (-0.441 p 1.40)-0.69] cos 0.297~ 

p=[1.97 exp (-0.318 p 1.3a)-0.97] cos 0.293~ 
p=[1.07 exp (-2.05 p 16a)-0.07] 

July 500 p=[1.14 exp (-2.13 p 1.80)-0.14] cos 0.340~ 
p=[1.16 exp (-2.16 p 1.")-0.16] cos 0.525~ 

Temperature (T) 850 

200 
850 

200 

p= [1.67 exp (-0.346 p l a r a )  -0.671 cos 0.354~ 

p=[0.94 exp (-0.780 p 1.17)+0.06] cos 0.127~ 
p=[0.869 exp (-2.82 p 1.0')+0.131] cos 0 .235~ 

July 500 p=[0.774 exp (-1.87 p 1.21)+0.226] cos 0.317~ 
p=[0.685 exp (-2.19 p o.g8P)+0.315] cos 0 .215~ 

January 500 p=[1.13 exp (-0.561 p 1,41)-0.13] 

Geopotential (2) 850 

200 
850 

200 

p=[0.511 exp (-0.95 p l.6)+0.489] cos 0.346~ 
January 500 p=[2.91 exp (-0.111 p 0.~~)-1.91] cos 0.572~ 

p=[2.25 exp (-0.208 p 0")-1.25] cos 0.566~ 
p=[0.915 exp (-0.716 p OJ~1)+0.085] 

July 500 p=[0.841 exp (-1.80 p 0.@0)+0.159] 
p=[0.842 exp (- 1.86 p O.OU) f0.1581 
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FIQURE 2.-Autocorrelation functions of the zonal component of the wind as a function of distance, p .  

b. Variances 

It is well known that variances computed from data 
having random errors are too high by an amount equal to 
the mean-square value of these errors. For the purpose of 
the present study, the variances were computed at  indi- 
vidual stations and corrected by substracting a,“ as 
determined by the procedure described above. The result- 
ing values were, of course, different from station to station. 
However, to be consistent with the assumptions of homo- 
geneity, the individual values were averaged over all 
stations for each element, level, and season. These 
average corrected values are listed in table 1. 

c. Autocorrelation Functions 

Under the assumption of homogeneity and isotropy, 
the autocorrelation, p, is a function only of the distance, 
p, between observation pairs and may be written 

(14) dp)=,. rn 
The average corrected variance was used in the above 

equation. Again, as in the case of the structure function, 
only station pairs with at  least 100 simultaneous observa- 
tions were used. The computed autocorrelations, plotted 
against p, showed, a certain amount of scatter, partly as a 

result of the anisotropy and nonhomogeneity of the true 
autocorrelations. We divided this scatter of points into 
100-km segments with middle points located a t  a distance 
d=150, 250, 350, . . ., 3950 km and determined values of 
H(d) in each interval by means of a function from Petersen 
and Truske (1969) that weights the computed values in 
each interval in accordance with the number of events 
(Nt)  from which they were determined, and on the basis 
of their distance from the middle point of their respective 
intervals. This function is 

In  the above equation, pi: denotes the distance between 
pairs of stations used in the calculations and its value for 
each d ranges between d+50 and d-50 km. 

The values, p(d), obtained by the above procedure were 
then fitted to empirical curves of the form 

p ( p ) = [ A  exp (-Bpc)+l-A] cos Dp. (16) 

This form was selected because it insures that the fitted 
autocorr elation functions are positive-definite, as they 
should be, and that moreover at  p=O, p ( p ) = l .  A “direct- 
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FIGURE 3.-The 12-point interpolation grid used in this study. 

0.06 , 
search” technique (Hooke and Jeeves 1961) was used to 
determine the coefficients A, B, C, and D. This method 
consists of making an initial estimate of the coefficients 
and then modifying these estimates in accordance with a 
least-squares error test. The testing algorithm changes the 
coefficients serially a t  a rate depending on the error re- 
duction effected by each change. Generally, about 350- 
500 iterations axe needed to arrive at the final solution. 
Almost identical final values of the coefficients are ob- 
tained from widely varying initial estimates. The auto- 
correlation functions derived using this technique are 
listed in table 2. A selection of the computed autocorrela- 
tion curves used in this study are shown in figure 2. 

4. HOMOGENEOUS OBSERVATIONS 
a. Optimum Weights 

The autocorrelation functions play an important role 
in determining the relative weights to be given to obser- 
vations at  different distances from the location to which 
the interpolation is made. To demonstrate how the 
weights vary with different distances and different values 
of the autocorrelation function, we have used a 12-point 
interpolation system schematized in figure 3. The inter- 
polation is made to the central point, @, from an inner 
ring of four observations and an outer ring of eight obser- 
vations. Figures 4 and 5 show the manner in which the 
weights of the inner-ring observations; p l ,  and of the 
outer-ring observations, p2, vary as a function of the 
exponent, A, of an assumed autocorrelation function, 
p=e-AP. The value of A roughly defines the scale of the 
field; the larger it is, the smaller the scale. Figures 4 and 5 
are identical except for A,  which is assumed to be 0.19 in 
figure 4 and 0.53 in figure 5. 

The figures show that, when A is large, p l  rises to a 
maximum when x is relatively small and starts to decrease 
thereafter. As A becomes smaller, p ,  reaches its maximum 
value at a larger grid length. For a given value of A,  the 
maximum value of p1 is constant. However, the smaller h is 
the larger this maximum value. For equal values of A, 
the value of 2 corresponding to the maximum value of 
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FIGURE 4.-The variation with grid length, 2, of the optimum 
weights of inner-ring and outer-ring observations (PI and pa, 
respectively) in the 12-point interpolation scheme of figure 3 as a 
function of the exponent, A, of an assumed autocorrelation 
function, p=e-Ar. A value of X=O.19 is assumed. 

p ,  is larger for larger values of A .  Note that when h is 
comparatively small, p2 increases as a function of z when 
p l  decreases and vice-versa. However, when h is large, 
both sets of weights can decrease simultaneously with 
increasing x, indicating a rapid increase in the error of 
interpolation with decreasing observational density. 

Figure 6 illustrates how optimum weights vary with 
locality and season even when the random errors of ob- 
servation are assumed to be constant. The solid curves 
represent the weights appropriate to an autocorrelation 
function, p= e-l .*p, which approximates conditions in the 
Caribbean region for the 500-mb geopotential field in 
July. The dashed curves are appropriate to an auto- 
correlation function, p=e-O .14p, which is more representa- 
tive of conditions in extratropical regions in January 
(Alaka 1970). The marked difference in weights, especially 
those relating to the closer observations, p l ,  clearly in- 
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FIGURE 5.-Same as figure 4 for X=0.53. 

dicates that an interpolation scheme that may be satis- 
factory for one region and season may be less than 
satisfactory for another region and season. 

b. Errors of Optimum Interpolation 

We have used eq (10) and (11) to determine the accu- 
racy with which we can estimate the value of the zonal 
wind component, U, at a central point by optimum inter- 
polation from the nearest 12 observations located on a 
regular grid as shown in figure 3. The rms random errors 
and ve,riances from table 1 and the autocorrelation func- 
tions from table 2 were used in the computations. 

Figures 7A and 7B show the rms interpolation errors 
of U in January as a function of the rms random error, 
u,, and the grid length, 2. The curved dashed line is the 
locus of points where the rms interpolation error E1I2=u,. 
Below this line, the interpolation errors exceed the rms 
random errors; above the line, the interpolated values 
are more accurate than the observations used in the 
interpolation. The less accurate the observations and the 

FIGURE 6.-Optimum interpolation weights of inner-ring obser- 
vations, p l ,  and outer-ring observations, p ~ ,  for the 500-mb geo- 
potential field in the Caribbean in July (solid curve) and in 
Northern Hemisphere extratropical regions in January (dashed 
curve). 

closer together they are, the more the gain in accuracy 
achieved by the interpolated values over the raw observa- 
tions. The horizontal dashed lines in the figures indicate 
the estimated present level of the rms random errors of 
rawin observations a t  the respective levels. They in- 
dicate that the observational grid length must be less than 
100 km to obtain interpolated values more accurate than 
the raw observations. 

Comparison of figures 7A and 7B shows that, for the 
same grid length, the present rawin observations are 
associated with higher rms interpolation errors at 200 
mb than at  850 mb. However, if we consider a normalized 
error criterion Q=En/u,  the reverse is true. This reversal 
is a result of the higher standard deviation of the zonal 
wind at200 mb than a t  850 mb and is illustrated in figure 
8, which shows the distribution of Q at 850 and 200 
mb in January as a function of ue and the number of 
regularly spaced observations in a zonal strip between 
30°N and 30's. The scale at  the top of the figures shows 
the distance between observations. Figure 9 shows the 
distribution of Q in July. 

A common feature of figures 8 and 9 is that, near the 
present level of the random errors of rawin observations 
(indicated by the dashed horizontal line), the isopleths of 
Q are almost vertical when the station separation is large. 
This indicates that decreasing the separation between 
observations is much more effective in reducing the errors 
of interpolation than increasing the accuracy of observa- 
tion. Indeed, at  850 mb, if the distance between neighbor- 
ing observations is about 800 km or more, it makes very 
little difference to the accuracy of the interpolated values 
whether the random errors of observations are 2 kt  or twice 
that amount. At 200 mb, the range of observational errors 
associated with comparable interpolation errors is even 
larger when the station separation is large. Under these 
circumstances, there would seem to be very little point 
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FIGURE 7.-Rms inteipolation errors, Ell2, of the zonal wind in 
January as a function of the rms random observation error, 
u., and grid length, x, at (A) 850 mb and (B) 200 mb. The dashed 
curves are the locus of points where E1I2=u.. The dashed straight 
lines indicate the estimated present level of the rms random errors 
of rawin observations. 

in attempting to provide very accurate observations, 
especially if these involve added effort and expense.2 

As the station separation decreases, the isolines of Q 
tend to curve until they become quasi-horizontal when 
the grid distance is reduced, say to 400 km or less. Be- 
yond this point, very little improvement is achieved by 
further reducing the station separation. By the same 
token, any increase in the accuracy of interpolation can 
be achieved almost exclusively by increasing the accuracy 
of the raw observations. 

According to a recent study by Steinitz et al. (1970). this conclusion may not be valid 
for temperature and geopotentlal fields in the Tropics. 
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FIGURE 8.-Normalized rms interpolation errors, &= E V u ,  of the 
zonal wind in January as a function of the rms observation errors 
and the number of observations in a tropical belt from 30"N to 
30's at (A) 850 mb and (B) 200 mb. The dashed curves are the locus 
of points where Q=u./u. The dashed straight lines indicate the 
estimated present level of the rms random errors of rawin 
observations. 

c. Network Considerations 

Figure 10 shows the variation of the rms interpolation 
errors of the zonal wind component as a function of the 
number of regularly spaced observations over the tropical 
zone between 30'N and 30's. The scale a t  the top of the 
figure indicates the corresponding distance between 
observations in hundreds of kilometers. The estimated 
random errors of current rawin observations listed in 
table 2 have been used in the computations. 

As one would expect, figure 10 clearly shows that, 
when the number of observations is small, a comparatively 
large gain is achieved by increasing the number of obser- 
vations. As these observations become denser, the gain 
achieved from a given number of additional observations 
decreases progressively. Thus, a t  200 mb. in January, the 
rms interpolation error may be reduced by 4 kt, from 18 
to 14 kt, by increasing the number of observations from 



FIGURE 9.-Same as figure 8 for July. 
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FIGURE 10.-Rms errors of optimum interpolation of the zonal wind 
from current rawin observations as a function of grid spacing. 

about 200 to 550 (i.e., by decreasing the distance between 
neighboring observations from 1200 to 700 km). However, 
a further addition of 500 observations would reduce the 
interpolation error by less than 2 kt. Beyond that, an 
increase of 600 additional observations would further 
reduce the interpolation error by less than 1 kt. A similar 
trend is noticeable a t  200 mb in July. At 850 mb, the 
curves are more flat indicating a smaller rate of gain in 
accuracy resulting from a given increase in the density of 
observations. 

The point of diminishing returns cannot be determined 
objectively. It depends on the purpose for which the 
observations are intended and the economic or scientific 
benefits of a given increment of accuracy in comparison 
with the effort and expense involved in providing the 
additional observations required to achieve this accuracy. 
For the purposes of forecasting by numerical models, the 
point of diminishing returns may be estimated by running 
these models with different data inputs and determining 
the manner in which the accuracy of forecasts is affected 
by increasing or decreasing the density of observations 
(Alaka and Lewis 1967, 1969, Gandin et  al. 1967). How- 
ever, the results of such experiments depend not only on 
the model used but also on the season, 1ocation;and 
meteorological situation. 

5. NONHOMOGENEOUS DATA 

The procedure symbolized in eq (10) and (11) can 
accommodate nonhomogeneous data as long as their 
error statistics are known. Each observation is given an 
appropriate weight depending on its error and on its 
position with respect to other observations and to the 
point to which the interpolation is made. The non- 
homogeneous data may be synoptic observations of differ- 
ent quality, a mixture of synoptic and asynoptic 
observations, or a mixture of observations and forecasts. 

a. Observations of Mixed Quality 

Table 3 shows the effect on the rms interpolation error 
of the 850-mb zonal wind in January at the center of a 
12-point grid where a varying number of "good" observa- 
tions are replaced by observations with three times their 
rms error. The manner in which good and bad observa- 
tions are mixed is indicated in the codgurations at  the 
top of each column. The values of uC in the first column 
are those of the better observations denoted by dots, 
while the crosses indicate the locations of the less accurate 
observations. Thus, in the top row of table 3, a dot de- 
notes an observation with an rms random error of l k t  
while a cross denotes an observation with an rms random 
error of 3 kt. For the sake of comparison, the table also 
shows the rms interpolation errors from only four good 
observations (configuration A) and from 12 good observa- 
tions (configuration B) . 

Comparison of the rms errors under configuration A in 
table 3 with those under configurations B-J indicates that 
when the rms random errors are very small (1 kt) there is 
little or no advantage in using other than the four closest 
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TABLE 3.-Rms interpolation errors of the zonal wind at 860 mb i n  January, associated with different configurations of observations of mixed 
quality. Values of uc, denoted by dots, represent the better observations; xs represent observations with m of 3 ~ ~ .  
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6.447 
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observations in the interpolation. As the rms random 
errors become larger (3-5 kt), it becomes advantageous to 
supplement the close observations with more remote 
observations even if some or all of the latter are of poorer 
quality (configurations B-J). This is especially the case if 
the sampling density is relatively high (200-km grid 
length). 

However, it is hard to compensate for bad observations 
that are close to the point to which the interpolation is 

, made by using more remote observations, even if these 
are of good quality. For instance, four good, close observa- 
tions are associated with less rms interpolation errors 
than 12 observations of which two inner-ring observations 
are bad (configuration L). Indeed, in all except one com- 
bination shown in table 3, namely, when u,=5 k t  and the 
grid length is 200 km, even one bad inner-ring observation 
can upset the advantage of eight additional good observa- 
tions (configurations A vs. K). 

An interesting feature of table 3 is that the effects dis- 
cussed above are relatively small. Compare, for instance, 
configuration B for ne= 1 k t  with configuration N for u,=5 
kt. The difference in the rms interpolation errors associ- 
at  ed with these two extreme cases is about 1.2 k t  when the 
grid length is 200 km. On the other hand, the increase in 
the rms interpolation error is more than 1.7 k t  where the 
grid length for configuration B increases to 400 km. This 
means that it is more advantageous to have a mixture of 
ob servations 200 km apart, with rms errors ranging from 
5 to 15 kt, than to have the same number of observations 
400 km apart with rms error of only 1 kt. 

The above results are of considerable importance. They 
point to the good use that can be made of nonconventional 
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FIQURE 11.-Optimum interpolation weights associated with dif- 
ferent configurations of observations of mixed quality. The 
optimum interpolation is made to the central point 8. The good 
observations (e) have an rms error of 3 kt; the bad ob- 
servations (X) have an rms error of 9 kt. The solid (dashed) 
underlines indicate weights which have increased (decreased) from 
their values in configuration A. 

observations such as observations from satellites, which 
have a high density but are of a relatively poor quality. 
This, of course, is contingent upon giving these observa- 
tions their proper weight in relation to  other observations. 
Figure 11 shows the effects on weights arising from increas- 
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ing the rms error of one, two, and three observations, in 
different locations, from 3 to 9 kt. Note that a change in 
the quality of even one inner-ring observation affects the 
weight of all observations used in the interpolation. 

b. Asynoptic Observations 

Experiment (BOMEX). I n  particular, we examined serial 
rawin ascents from stationary ships participating in the 
experiments and decided to combine the data from the 
NOAA ships Mt. Mitchell and Discoverer; these data 
appeared to be mutually consistent. The ascents were 
made in 1969 during the periods May 1-15, May 24- 

The inclusion of asynoptic observations in an optimum 
interpolation scheme depends on a knowledge of the time- 
variation of the meteorological element in question. 

Consider two sets of observations separated by a time- 
interval, T ,  and let the variance of the change in the value 
of the observations during this interval be denoted by 
6. This quantity is the temporal equivalent of the struc- 
ture function, P ( p ) ,  discussed in section 3. 

I n  extending the theory of optimum interpolation to 
accommodate asynoptic observations, we may consider 
d as an additional source of random errors. Being in- 
dependent of the random errors of observations, a," may be 
added to the variance of these errors. Thus, a new "effec- 
tive" rms random error, a:, may be written 

a:= (a:+a:)"2. (17) 

If the natural variance, u2, of the element is constant 
over the interval T ,  the quantity u," is related to the time- 
lag autocorrelation coeficient as follows: 

a,"=2a2[1 - p ( 7 ) ] .  (18) 

To obtain a: and c ( ( T ) ,  we had recourse to observations 
from the Barbados Oceanographic and Meteorological 

June 10, June 21-July 2, and July ll-July 28. 
Figure 12 shows the variation of a? of the zonal wind 

component at  850 mb as a function of the time intervals, 
7 .  The figure has two scales on the orgnate. The left-hand 
scale relates to the computed values a?. The function that 
best fitted these values was determined by the direct- 
search method described in section 3 and was found to be 

uf=13.7( 1-e-0-0.32 cos 0.4327) 4-6.02. (19) 
A 

Note that the fitted function has a value of 6.02 at  zero 
time-lag. This quantity represents the inflation of the 
true values of d arisihg from the random errors in the 
data and must be subtracted from the computed values 
to obtain a corrected estimate. The scale for these corrected 
estimates is given on the right-hand side of figure 12. The 
corresponding values of ~((7) are shown in figure 13. 

Figure 12 is of considerable interest. It shows that a 
time-lag of about 24 hr is required for 4 to equal the mean- 
square random observation errors, a;", which we have 
estimated to be approximately 9 kt2. This means that, 
for the purpose of optimum interpolation, a 24-hr-old 
rawin observation at  850 mb over the tropical Atlantic 
during the period May-July is equivalent to a current 
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observation with twjce the mean-square random error. 
Similarly, an observation that is 6-hr old would be 
equivalent to a current observation with the mean-square 
error increased by only about 20 percent. Thus, accord- 
ing to  the results of subsections 3b and 3c, replacing a 
current observation by one that is 6-hr old would result in 
a relatively small increase in the rrns interpolation error. 

This conclusion is confirmed by table 4, whichi llustrates 
the effect of mixing old and new observations on the rrns 
errors of interpolation of the zonal wind a t  850 mb in 
July. We have assumed that the values of a: in July are 
similar to those shown in figure 12, which, as mentioned, 
were computed from rawin ascents made during a 3-mo 
period from May to July. 

The manner .in which old and new observations are 
mixed is schematized a t  the top of the table; the new 
observations are denoted by dots and the old observations 
by x's. In  all cases, the interpolation is made to the central 
point, 8, from 12 surrounding observations as shown. 
The age of the asynoptic observations, 7, varies from 3 to 
24 hr and the grid length of the observational lattice 
varies from 200 to 1000 km. 

From table 4, we note that the increase in the rrns 
interpolation error is almost negligible if all the 12 
synoptic observations (configuration A) are replaced by 
observations which are 3-hr old (configuration E). Indeed, 
if the grid length of the observational lattice is 200 km, 
replacing current observations with observations that are 
even 24-hr old would increase the rms interpolation error 
from 2.863 to 3.063 k t  or about 7 percent. The percent 
loss becomes even smaller as the grid length of the obser- 
vational lattice becomes larger. By contrast, if the obser- 
vational grid length is increased from 200 to 400 km, the 
rms interpolation error increases by more than 30 percent. 

An interesting feature of table 4 is brought out by 
comparing configurations B and C. These indicate that 
two old inner observations result in a higher rrns inter- 

3.823 3.837 
3.823 3.844 
3.823 3.860 
3.823 3.901 

TABLE 4.-The efect on the rrns interpolation errors of mixing new and 
old observations in a n  optimum interpolation scheme of the 860-mb 
zonal wind. The  npw observations are deneted by dots. T h s  age 
(T)  of the old obseruations i s  shown in the lpft-hand column. 

4.490 4.479 
4.496 4.479 
4.508 4.479 
4.540 4.480 

T ( h r )  

0 
3 
6 

12 
24 

0 
3 
6 

12 
24 

0 
3 
6 

12 
24 

0 
3 
6 

12 
24 

4.491 
4.496 
4.508 
4.541 

A 

5.234 5.229 
5.237 5.229 
5.243 5.229 
5.260 5.229 

2.863 

3.823 

4.479 

5.228 
5.234 
5.237 
5 .243  
5.261 

R C D E 

x x  

:id:: 4 4  

2.899 
2.916 
2.956 
3.063 

3.853 
3.866 
3.890 
3.993 

4.502 
4.513 
4.539 
4.610 

5.240 
5.245 
5.259 
5.296 

polation error than four old outer observations. Con- 
figuration C also shows that, if the old observations are 
some distance from the location to which the interpolation 
is made, it matters very little whether these observations 
are 3- or 24-hr old. 

c. Optimum Use of Forecasts 

The use of forecasts as an aid to objective analysis is a 
well-established concept that has proved its merit. The 
advantage of forecast values is that they are located at  
gridpoints where they are needed for input into dynamic 
forecasting models. Obviously, a good observation close 
to a gridpoint may provide a very good approximation to  
the gridpoint value and should be given a proportionately 
large weight in estimating the true gridpoint value. On 
the other hand, the same observation would be less repre- 
sentative of a more distant gridpoint value and should 
carry a proportionately smaller weight in estimating that 
value. 

The manner in which observations and forecast grid- 
point values may best be combined is a function of the 
error statistics of both sets of data, of the scale of the 
meteorological field that is being reconstructed, and of the 
distance and location of the observations from the grid- 
point for which the value is being determined. 

In  the experiments summarized in figure 14, we have 
attempted to analyze the rrns errors involved in recon- 
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FIQURE 14.-The normalized rms error, S,  associated with the re- 
construction of the zonal wind a t  850 mb in January from an 
eight-point array of forecast gridpoint values interspersed with 
observations. The solid dots in the configurations a t  the bottom of 
the figure denote the location of the reconstructed gridpoint 
values; the open dots and crosses represent, respectively, 
forecast gridpoint values and observations used in the  
reconstruction. 

structing the zonal wind field a t  850 mb in January from 
an array of forecast gridpoint values interspersed with 
observations. We have assumed that the rms error of the 
observations is 3 k t  (ie., 0.33a), while the rms error of the 
forecasts is 0.630. In  every case, the reconstructed grid- 
point value is determined by optimal combination of the 
forecast value at  the gridpoint with the eight nearest 
gridpoint values plus any observations within two grid 
lengths of the central gridpoint. 

In  the experiment schematized in configuration A, 
we have assumed the absence of new observations and have 
corrected the central gridpoint value by optimum smooth- 
ing with the eight nearest values. The results, shown in 
curve A, indicate an appreciable reduction in the normal- 
ized rms error below that of the unsmoothed forecast 
value (S=0.63), especially if the points in the array are 
close together. Thus, if the grid length is 300 km, the rms 
error is reduced from 0.630 to 0.420. Curves B, C, D, and 
E show the added improvement that is derived from the 
introduction of 1, 2, 3, or 4 observations at  a distance of 
one-half grid length in the manner shown in the scheme 
a t  the bottom of the figure. 

Curve F is of special interest. Comparison with curve A 
shows that the addition of four observations a t  a distance 
of one and one-half grid lengths from the central point is 
of very little value. Indeed, the rms error in determining 
the central value does not decrease below that corre- 
sponding to optimum smoothing alone, except when the 
grid length is very small. 

Figure 15 shows the optimum weights associated with 
the data configurations of figure 14 when the grid length 
is 200 km. The open circles in the figure denote the grid- 
point values that are being reconstructed; the solid dots 
and squares denote, respectively, the forecast values and 

X =  200 km 
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FIGURE 15.-Optimum weights associated with the data configura- 
tions of figure 14 when the grid length is 200 km. The open circles 
denote the gridpoint values that are being reconstructed; the solid 
dots and squares denote, respectively, the forecast values and the 
observations used in the reconstruction. 

observations used in the reconstruction. I n  figure 15A, 
representative of optimum smoothing, the weight of the 
central value is slightly more than the combined weights 
of the four nearest values and slightly less than two-thirds 
the combined weights of the eight nearest values. A single, 
good observation as in figure 15B carries more than 
three-fourths the weight of the central gridpoint value. 
Its introduction reduces the optimum weights of all the 
other values used in the interpolation scheme. This 
reduction is greater for values that are close to the obser- 
vation. It takes two good observations as in figure 15C 
to match the weight of the central gridpoint value, 
even though the rms error of the latter is about two times 
that of the former. Finally, as shown in figure 15F, the 
introduction of four distant observations hardly affects the 
weight of the central value, which remains more than six 
times larger than that of the individual observations. 

6. SUMMARY AND CONCLUSIONS 

We have attempted to  illustrate the manner in which 
the theory of optimum interpolation can be extended to 
combine meteorological data from different sources and 
times into a system that weights each observation in ac- 
cordance with its relative error characteristics, location, 
and time of origin. We have shown how the error statis- 
tics may be estimated if one disposes of a sufficiently long 
record of observations. In  addition to a knowledge of 
these random observational errors, the optimality of the 
theory rests on accurate estimates of the variances and 
covariances of the meteorological fields that are being 
reconstructed. 

In  deriving the basic equations, we found it convenient 
to  make two assumptions. The first, which is generally 
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valid, is that the random errors are independent of each 
other and of the true value of the observations. The 
second and less valid assumption is that the variances are 
homogeneous and the covariances both homogeneous and 
isotropic. Because of the latter assumptions and the sensi- 
tivity of the experimental results to the autocorrelation 
values, these results should be considered valid only in a 
root-mean-square sense, with sizable deviations therefrom 
to be expected from day to day. 

The results reported in sections 4 and 5 relate mainly t o  
the zonal wind component at  850 and 200 mb in January 
and July. The validity of extrapolating these results to  
other elements, areas, seasons, and levels will have to be 
established by further experiments. 

It should be stressed that the assumptions of homo- 
geneity and isotropy were made for convenience and are 
not intrinsic to the basic theory. Given a long enough 
record of data, it would be possible to  compute anisotropic 
autocorrelations that would be a function of direction, as 
well as of distance, between observation pairs. Also, at  the 
cost of more computer time, it would be possible to incor- 
porate such anisotropic functions and nonhomogeneous 
variances into the experiments. Finally, the experiments 
could conceivably be optimized on a day-to-day basis by 
computing daily values of p,,, from observations used in 
the interpolation, and b, from these same observations 
plus some first-guess value of the element at  the point to 
which the interpolation is made. We highly recommend 
future experiments that explore the above possibilities. 
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